

Features

- Hybrid 6-pin package
- 1500Vdc isolation voltage
- High CTR
- Small package outline
- High reliability and rugged construction
- High reliability screening available
- DC input with transistor output
- Operating temperature range -55°C to +125°C

Description

The IBI100 consists of a phototransistor optically coupled to an AlGaAs infrared-emitting diode in a leadless hybrid surface mount package.

Schematic Diagram

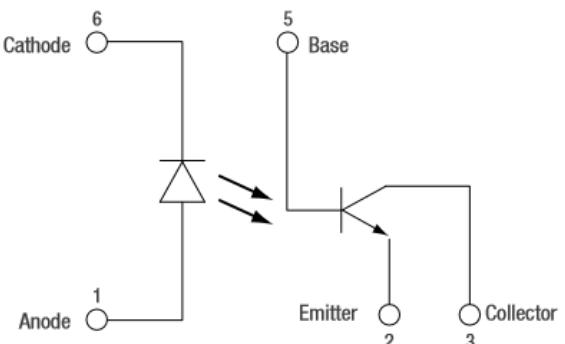


Figure 1. IBI100 Schematic Diagram

Applications

- Switch mode power supplies
- Computer peripheral interface
- Motor control
- Ground signal isolation

Package Dimensions in inches (mm)

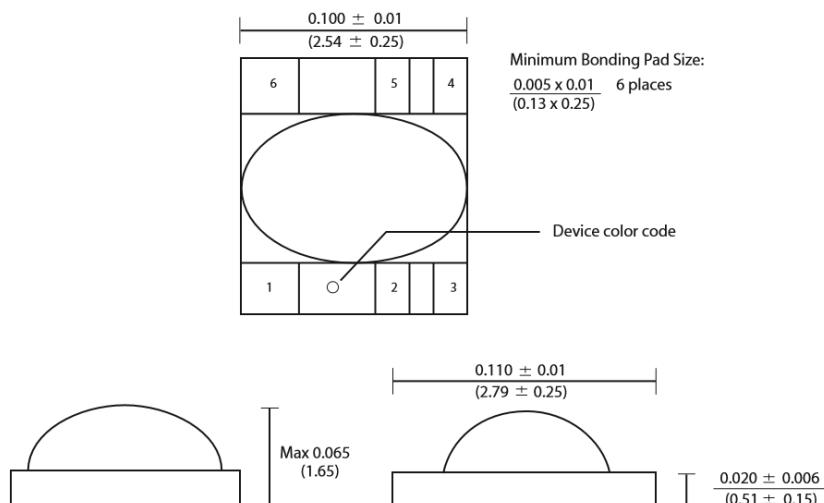


Figure 2. IBI100 Package Dimensions

Absolute Maximum Rating at 25°C (Note 1)

Symbol	Parameters	Ratings	Units	Notes
V _{DC}	Isolation voltage	-1500 to +1500	V	2
T _{OPR}	Operating temperature	-55 to +125	°C	
T _{TSG}	Storage temperature	-65 to +150	°C	
T _{SOL}	Soldering temperature (10 seconds maximum)	240	°C	
Emitter				
P _D	Emitter power dissipation	70	mW	
I _F	Forward current	40	mA	
I _{F(TRANS)}	Peak transient current (≤1ms P.W.)	60	mA	
V _R	Reverse voltage	3	V	
Detector				
P _D	Detector power dissipation	300	mW	3
V _{CE}	Collector-Emitter Voltage	35	V	
V _{EC}	Emitter-Collector Voltage	7	V	
V _{CB}	Collector-Base Voltage	70	V	

Notes

1. When using this product, please observe the absolute maximum ratings. Only one parameter may be set at the limit to ensure no damage to the device. Exceeding any of the limits listed here may damage the device.
2. Measured between input pins 1 and 6 shorted together, and output pins 2, 3, 4, and 5 shorted together. T_A = 25°C and duration = 1sec.
3. Linear derating factor: 3.0 mW/°C above 25°C

ESD Precaution

Please be advised that normal static precautions should be taken in the handling and assembly of this device to prevent damage or degradation which may be induced by electrostatic discharge (ESD).

Electrical Characteristics $T_A = -55^\circ\text{C}$ to $+125^\circ\text{C}$ (unless otherwise specified) (Note 1)

Emitter Characteristics

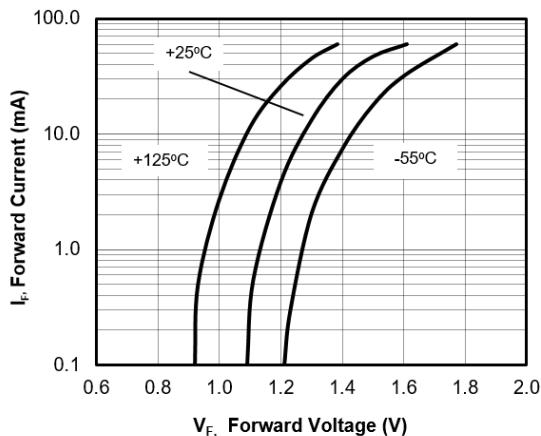
Symbol	Parameters	Test Conditions	Min	Typ	Max	Units	Notes
V_F	Forward Voltage	$I_F=10\text{mA}$	0.9	1.3	1.7	V	
I_R	Reverse Current	$V_R = 3\text{V}$	-	-	100	μA	

Detector Characteristics

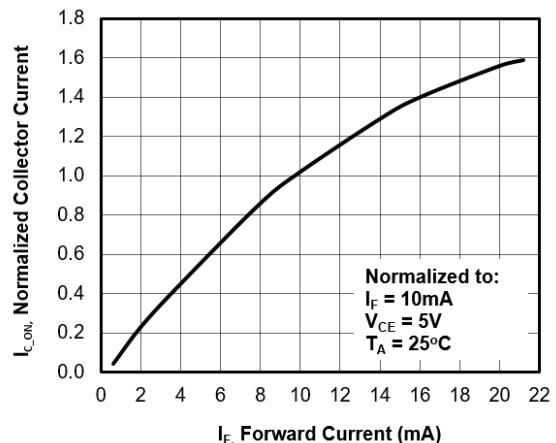
Symbol	Parameters	Test Conditions	Min	Typ	Max	Units	Notes
BV_{CEO}	Collector-Emitter Breakdown Voltage	$I_{CE}=100\mu\text{A}$	30	-	-	V	
BV_{CBO}	Collector-Base Breakdown Voltage	$I_{CB}=10\mu\text{A}$	70	-	-	V	
BV_{ECO}	Emitter-Collector Breakdown Voltage	$I_{EC}=100\mu\text{A}$	5	-	-	V	
I_{CEO}	Leakage Current (Collector to Emitter)	$V_{CE}=20\text{V}$, $I_F=10\text{mA}$, $T_A=25^\circ\text{C}$	-	-	100	nA	
		$V_{CE}=20\text{V}$, $I_F=10\text{mA}$, $T_A=100^\circ\text{C}$	-	-	100	μA	

Transfer Characteristics

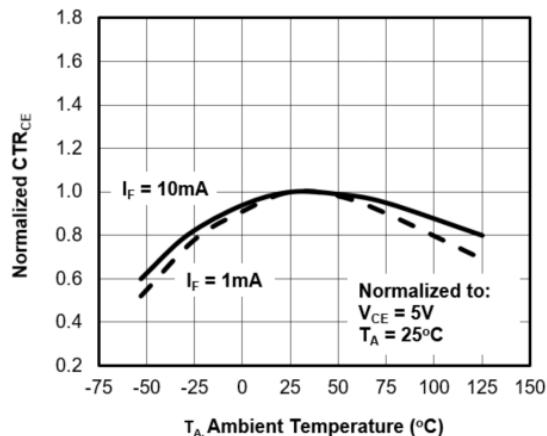
Symbol	Parameters	Test Conditions	Min	Typ	Max	Units	Notes
CTR	Current Transfer Ratio	$V_{CE}=5\text{V}$, $I_F=1\text{mA}$, $T_A=25^\circ\text{C}$	100	200	-	%	2
		$V_{CE}=5\text{V}$, $I_F=10\text{mA}$, $T_A=25^\circ\text{C}$	100	200	-	%	2
$V_{CE(\text{SAT})}$	Collector-Emitter Saturation Voltage	$I_F=10\text{mA}$, $I_C=2\text{mA}$	-	0.15	0.3	V	
I_{IO}	Input to Output Leakage Current	$V_{IO}=1500\text{VDC}$ Relative Humidity $\leq 50\%$ $T_A=25^\circ\text{C}$	-	-	1	μA	3

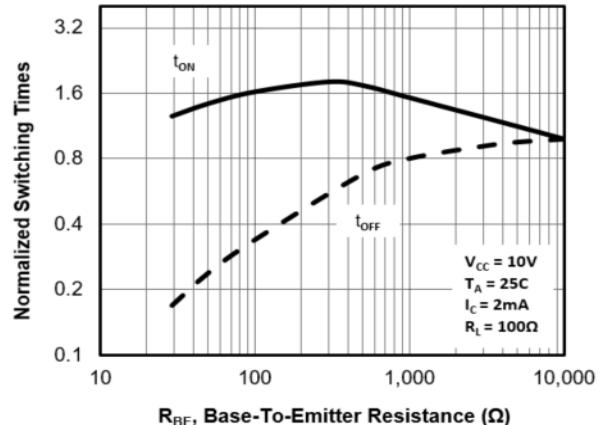

Switching Characteristics

Symbol	Parameters	Test Conditions	Min	Typ	Max	Units	Notes
t_{ON}	Turn-on Time	$I_C=2\text{mA}$, $V_{CC}=10\text{V}$, $R_L=100\Omega$, $T_A=25^\circ\text{C}$	-	5	15	μs	
t_{OFF}	Turn-off Time		-	5	15		


Notes

1. Performance guaranteed only under conditions listed in above tables.
2. CTR is the ratio of the output collector current I_{C_ON} to the forward LED current I_F multiplied by 100%
3. Measured between input pins 1 and 6 shorted together, and output pins 2, 3, 4, and 5 shorted together. $T_A = 25^\circ\text{C}$ and duration = 1sec.


Typical Characteristic Curves


Figure 3. Forward Current vs Forward Voltage

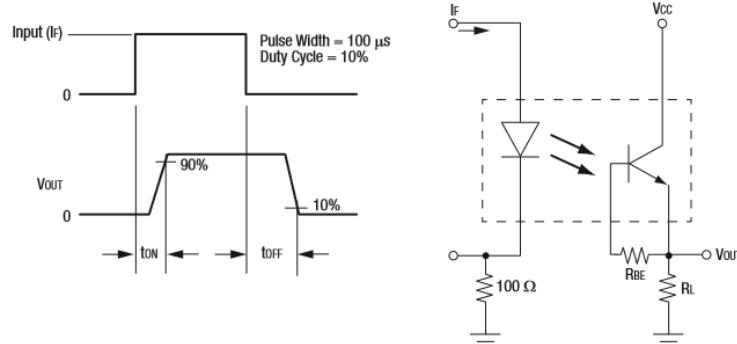

Figure 4. Collector Current vs Forward Current

Figure 5. Normalized CTR_{CE} vs Temperature

Figure 6. Switching Times vs R_{BE}

Figure 7. IBI100 Switching Test Circuit

Miniature Phototransistor
Hybrid Surface Mount Optocoupler

IBI100

Ordering Information

<i>Manufacturing Part Number</i>	<i>Part Description</i>
IBI100	Miniature Phototransistor 6-pin Hybrid Package

DISCLAIMER

Isobaud Inc. reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Isobaud Inc. does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.